Descubren una anomalía del átomo que permitirá nuevos estados de la materia
http://es.gizmodo.com/descubren-una-anomalia-del-atomo-que-permitira-nuevos-e-1726874937

Carlos Zahumenszky
Los materiales cambian sus propiedades cuando se los somete a altas presiones. Elementos conductores de la electricidad, como el sodio, se convierten en aislantes, mientras que otros como el oxígeno se solidifican y pueden llegar a ser un superconductor. La razón de estos cambios está en el mismo átomo, pero hoy la ciencia ha descubierto un cambio hasta ahora desconocido.

Cuando un elemento químico o un compuesto se somete a altas presiones, tienen lugar dos cambios. El primero es que la distancia entre átomos se hace más corta. Si la presión es suficiente, también cambia el comportamiento de los electrones de valencia. Los electrones de valencia son los que conforman el exterior del átomo, y son importantes porque son los que interactúan con los electrones de otros átomos y forman enlaces para dar lugar a diferentes compuestos.

Este es el aspecto que tienen los tres estados de la materia a la vez
Siempre nos han enseñado que estos tres estados de la materia son incompatibles entre sí y, al…
Seguir leyendo
En todo ese baile de electrones a alta presión, había un elemento que siempre permanecía invariable: los electrones internos que rodean el núcleo el átomo. Un equipo internacional de científicos dirigidos por la Universidad de Linköping, en Suecia, acaba de descubrir que los electrones internos del átomo también cambian si la presión es suficiente.

Lo que han hecho concretamente ha sido someter una pequeña cantidad de osmio (uno de los metales más densos que se conocen) a una presión de 7,7 millones de atmósferas, casi el doble de la presión existente en el núcleo de la Tierra. Para ello han utilizado un dispositivo llamado celda de yunque de diamante. Este instrumental científico permite precisamente aplicar altísimas presiones sobre cantidades de material de apenas unos milímetros.

Los cálculos de la densidad del osmio han permitido descubrir que los electrones internos también reaccionan a esa presión y comienzan a interactuar. Es la primera vez que se constata ese comportamiento. Dado que las interacciones entre electrones definen la propia composición química, esta anomalía es el punto de partida para el estudio de nuevos estados de la materia. El profesor A.I. Abrikosov, uno de los coautores del estudio explica:

La interacción entre electrones internos nunca había sido observada. El fenómeno significa que podemos empezar a buscar estados de la materia completamente inéditos. Estamos encantados de haber abierto toda una nueva caja de preguntas para futuras investigaciones.
[Universidad de Linköping vía Nature]

Posteado por: Fe | 19 abril, 2015

TIPOS DE REACCIONES QUÍMICAS

Posteado por: Fe | 19 abril, 2015

ENLACES QUÍMICOS

Para entender los enlaces iónicos, covalentes y metálicos, estos didácticos vídeos:

 



Posteado por: Fe | 19 abril, 2015

SISTEMA PERIÓDICO – SM

tabla-periodica-sm (1)

Move over, covalent and ionic bonds, there’s a new chemical bond in town, and it loves to shake things up.

It’s taken decades to nail down, but researchers in Canada have finally identified a new chemical bond, which they’re calling a ‘vibrational bond’.

This vibrational bond seems to break the law of chemistry that states if you increase the temperature, the rate of reaction will speed up. Back in 1989, a team from the University of British Columbia investigated the reactions of various elements to muonium (Mu) – a strange, hydrogen isotope made up of an antimuon and an electron. They tried chlorine and fluorine with muonium, and as they increased the heat, the reaction time sped up, but when they tried bromine (br), a brownish-red toxic and corrosive liquid, the reaction time sped up as the temperature decreased. The researchers, Amy Nordrum writes for Scientific American, “were flummoxed”.

Perhaps, thought one of the team, chemist Donald Flemming, when the bromine and muonium made contact, they formed a transitional structure made up of a lightweight atom flanked by two heavier atoms. And the structure was joined not byvan der Waal’s forces – as would usually be expected – but by some kind of temporary ‘vibrational’ bond that had been proposed several years earlier.

Nordrum explains:

“In this scenario, the lightweight muonium atom would move rapidly between two heavy bromine atoms, ‘like a Ping Pong ball bouncing between two bowling balls,’ Fleming says. The oscillating atom would briefly hold the two bromine atoms together and reduce the overall energy, and therefore speed, of the reaction.”

But back then, the team didn’t have the technology needed to actually see this reaction take place, because it lasts for just a few milliseconds. But now they do, and the team took their investigation to the nuclear accelerator at Rutherford Appleton Laboratory in England.

With the help of theoretical chemists from the Free University of Berlin and Saitama University in Japan, Flemming’s team watched as the light muonium and heavy bromine formed a temporary bond. “The lightest isotopomer, BrMuBr, with Mu the muonium atom, alone exhibits vibrational bonding in accord with its possible observation in a recent experiment on the Mu + Br2 reaction,” the team reports in the journal Angewandte Chemie International Edition“Accordingly, BrMuBr is stabilised at the saddle point of the potential energy surface due to a net decrease in vibrational zero point energy that overcompensates the increase in potential energy.”

In other words, the vibration in the bond decreased the total energy of the BrMuBr structure, which means that even when the temperature was increased, there was not enough energy to see an increase in the reaction time.

While the team only witnessed the vibrational bond occurring in a bromine and muonium reaction, they suspect it can also be found in interactions between lightweight and heavy atoms, where van der Waal’s forces are assumed to be at play.

“The work confirms that vibrational bonds – fleeting though they may be – should be added to the list of known chemical bonds,” says Nordrum at Scientific American.

Sorry, future high school chemistry students, here’s another thing you’ll probably have to rote learn.

Source: Scientific American

Posteado por: Fe | 25 enero, 2015

¿CÓMO ES DE PEQUEÑO UN ÁTOMO?

En este vídeo, muy didáctico y visual, podréis entender mejor la magnitud de un átomo y sus componentes…

Posteado por: Fe | 14 noviembre, 2014

Educaplus

introeducaplus

Educaplus es un espacio web creado por el profesor andaluz Jesús Peñas. Contiene temas de disciplinas variadas, entre ellas, Física y Química. Trabaja las unidades de la luz, cinemática, leyes de los gases, propiedades periódicas y moléculas en 3D.

educapluseducaplus_educared-ar_recursos_lupa_1

Posteado por: Fe | 10 octubre, 2014

El Nobel de Química 2014, para Betzig, Hell y Moerner

El Nobel de Química 2014, para Betzig, Hell y Moerner

El jurado ha reconocido el trabajo de los tres galardonados en el desarrollo de microscopios que han contribuido al estudio de enfermedades como el alzheimer y el parkinson

Barcelona. (Agencias/Redacción).- Los estadounidenses Eric Betzig y William E. Moerner y el alemán Stefan W. Hell han ganado el Nobel 2014 de Química por desarrollar la microscopia fluorescente, anunció hoy la Real Academia de las Ciencias Sueca.

El jurado quiso así reconocer el trabajo de los tres galardonados en el desarrollo de microscopios de “alta resolución” que emplean “moléculas fluorescentes”, una técnica también denominada “nanoscopia”.

Esto permite estudiar “moléculas individuales dentro de células vivas”, algo hasta entonces imposible con las técnicas de los microscopios ópticos tradicionales.

Este avance ha contribuido al estudio de enfermedades como el alzheimer y el parkinson, así como en el análisis de procesos cognitivos en las neuronas del cerebro, explicó el jurado.

El estadounidense Eric Betzig, nacido en 1960, es doctor por la Universidad Cornell de Ithaca (Nueva York) y trabaja actualmente en el Instituto Médico Howard Hughes, de Ashburn (EEUU).

El alemán Stefan W. Hell, nacido en Rumanía en 1962, se doctoró en la Universidad de Heidelberg y dirige hoy el Instituto Max Planck de Química Biofísica, en Gotinga (Alemania), y el Centro Alemán de Investigación contra el Cáncer de Heildelberg.

El tercer premiado, el estadounidense William E. Moerner, nació en 1953 y, tras doctorarse como Betzig en la Universidad Cornell, trabaja en la Universidad de Stanford.

Los galardonados dividirán a partes iguales los 8 millones de coronas suecas (879.000 euros, 1,1 millones de dólares) con que está dotado el premio.

En año pasado, la Real Academia de Ciencias Sueca premió con el Nobel de Química a tres investigadores por elaborar sistemas informáticos universales que han revolucionado el estudio de la química y con aplicaciones en múltiples campos, desde la medicina a la mecánica.

Los galardonados fueron el austríaco Martin Karplus, el británico Michael Levitt y el israelí Arieh Warshel, que habían desarrollado modelos multiescala para sistemas químicos complejos permitiendo unir dos campos antes enfrentados, la química clásica y la química cuántica, según destacó la Academia.

El anuncio de los ganadores del apartado de Química de hoy siguió a los correspondientes a Física, que recayó en los investigadores Isamu Akasaki, Hiroshi Amano y Shuji Nakamura por su “invención de la luz azul eficiente emisora de diodos, que ha permitido fuentes de luz blanca brillantes y que ahorran energía”; y Medicina, otorgado el lunes al estadounidense John O’Keefe y al matrimonio noruego formado por May Britt Moser y Edvard I. Moser “por sus descubrimientos de células que constituyen un sistema de posicionamiento en el cerebro”.

El Premio Nobel es el mayor galardón al que optan investigadores, escritores o activistas. La ronda de anuncios de ganadores de los Premios Nobel 2014 seguirá con el de Literatura, que se entregará el próximo jueves, el de la Paz, el próximo viernes, y el de Economía, el lunes.

Leer más: http://www.lavanguardia.com/ciencia/20141008/54417733584/nobel-quimica-2014-betzig-hell-moerner.html#ixzz3FlCVpHEt
Síguenos en: https://twitter.com/@LaVanguardia | http://facebook.com/LaVanguardia

Tres científicos de Japón obtienen el galardón “por la invención de los diodos emisores de luz azul que han permitido las fuentes de luz brillantes y de ahorro energético”

Imagen de archivo de Shuji Nakamura, uno de los ganadores del premio Nobel de Física por la invención de las bombillas LED. / STEVE MALONE (AP)

Isamu Akasaki, Hiroshi Amano y Shuji Nakamura reciben este año el máximo galardón mundial de física, el Premio Nobel, por un trabajo que disparó una revolución en la tecnología de la luz: la “invención de los diodos emisores de luz azul eficientes que han permitido las fuentes de luz brillantes y de ahorro energético”, según ha destacado el comité de la Real Academia sueca de ciencias. En otras palabras, Akasaki y sus colegas abrieron la puerta a las bombillas LED de luz blanca y larga duración. “Conlas bombillas LED tenemos ahora alternativas más duraderas y más eficientes a las viejas fuentes de luz”, destaca la academia sueca.

Akasaki, Amano (ambos de la Universidad de Nagoya, en Japón) y Nakamura (en la Universidad de California en Santa Cruz) lograron crear haces de luz azul con semiconductores a principios de los años noventa. Los diodos rojos y verdes existían desde hacía tiempo, pero hacía falta el tercer color, el azul, para lograr esa suma de los tres que produce el blanco, ha explicado Staefan Normark, secretario permanente de la Academia Sueca al anunciar en Estocolmo, a las 11.45 de la mañana, el Premio Nobel de Física 2014. Pese a los esfuerzos de la industria y de los científicos, el LED azul se había resistido durante 30 años.

Los tres investigadores premiados triunfaron donde todos habían fracasado hasta entonces. “Akasaki trabajaba con Amano en la Universidad de Nagoya y Nakamura estaba entonces empleado en Nichia Chemicals, una pequeña empresa de Tokushima, Nichia”, continúa la Real Academia Sueca de Ciencias. “Su invento fue revolucionario. Las bombillas de luz incandescente iluminaron el siglo XX; el siglo XXI será el de las bombillas LED”.

“Siempre le recomiendo a los jóvenes científicos que no centren sus trabajos en lo que está de moda, que investiguen sobre lo que creen, aunque no consigan resultados inmediatos”, explicó Akasaki durante una rueda de prensa en Nagoya minutos después de producirse el anuncio del premio que describió como “el mayor de los honores”, informa Europa Press.

Los 880.000 euros de dotación del Nobel se distribuyen a partes iguales entre los tres galardonados. Akasaki y Amano, ambos japoneses, nacieron en 1929 y 1960, respectivamente. Nakamura, 1954, tiene nacionalidad estadounidense.

Las luces LED, recalcan los científicos de la academia sueca, dado su bajísimo consumo, pueden funcionar alimentadas por paneles solares baratos, lo que abre la posibilidad de una mejora de la calidad de vida para 1.500 millones de personas en el mundo que no tienen acceso a la red eléctrica. Este año, el galardón de Física se ajusta fielmente, al menos en parte, al legado de Alfred Nobel, que establece que se dediquen los fondos a “premios para aquellos que, durante el año precedente, hayan generado un gran beneficio para la humanidad”. Lo del “año precedente” no se cumple casi nunca.

Los LED son cada vez más eficientes en el sentido de que requieren menos energía para emitir luz, en comparación con las bombillas tradicionales o los fluorescentes. Así, los más avanzados alcanzan más de 300 lumen (flujo luminoso) por vatio, frente a los 16 de las bombillas incandescentes y 70 de los fluorescentes. Y, a diferencia de estos últimos, los LED no contienen mercurio, señala la academia sueca al explicar la importancia socioeconómica y medioambiental del trabajo galardonado este año. En cuanto a su duración, los LED aguantan hasta 100.000 horas encendidos, las bombillas incandescentes mil y los fluorescentes, 10.000. Hay que recordar que las llamadas bombillas de bajo consumo de hace pocos años son fluorescentes, pero con la llegada de los LED, ese apelativo de bajo consumo ha perdido su significado.

Un diodo emisor de luz está formado por varias capas de materiales semiconductores (la longitud de onda de la luz emitida depende del material utilizado) y la electricidad se convierte directamente en fotones, partículas de luz. Ahí está la calve de su eficiencia, ya que las fuentes luminosas tradicionales la mayor parte de la electricidad se convierte en calor y solo un poco en luz. En una bombilla de las de antes, o en un halógeno, la corriente eléctrica calienta un filamento que se pone incandescente y emite luz.

El diodo de luz roja fue inventado a finales de los años cincuenta y se utilizaron, por ejemplo, en relojes digitales y calculadoras, así como en indicadores de encendido/apagado de aparatos eléctricos. El azul se resistió mucho tiempo y los tres investigadores ahora premiados “retaron la verdades establecidas, trabajaron duro y asumieron considerables riesgos”, señala el comité Nobel al explicar su logro. Hicieron miles de experimentos y, la mayor parte de las veces, fallaron, pero no desesperaron, siguieron adelante. Tanto Akasaki y su entonces estudiante de doctorado Amano, como Nakamura, habían optado por el nitruro de galio como material para lograr el emisor azul. Era la elección correcta, pero hacer cristales de nitruro de galio de suficiente calidad fue un reto enorme. Akasaki y Amano lo lograron en 1986 y, con sus cristales de nitruro de galio, presentaron en 1992 su primer diodo de emisión de luz azul brillante. Nakamura, por su parte, hizo sus cristales con alta calidad de ese material en 1988 y presentó el invento también en 1992, pero con una solución técnica diferente. Los tres se dedicaron, durante la década de los noventa a mejorar sus LEDs de color azul haciéndolos más eficientes con diferentes aleaciones de nitrito de galio utilizando para la fabricación de los cristales aluminio o iridio. Además, los tres inventaron también un láser azul con un LED, del tamaño de un grano de arena, como componente esencial.

“Mucha gente abandonó, pero yo seguí trabajando en lo que creo y amo”, ha recordado hoy Akasaki.

Posteado por: Fe | 29 septiembre, 2014

The colours of autumn leaves

10622756_580318285408170_8111985956420479147_n

Older Posts »

Categorías

Seguir

Recibe cada nueva publicación en tu buzón de correo electrónico.

Únete a otros 336 seguidores

A %d blogueros les gusta esto: